
Pergamon 
Pharmacology Biochemistry and Behavior, Vol. 49, No. 1, pp. 257-261, 1994 

Copyright © 1994 Elsevier Science Ltd 
Printed in the USA. All rights reserved 

0091-3057/94 $6.00 + .00 

0091-3057(94)E0131-Z 

BRIEF COMMUNICATION 

Cholesterol Treatment Facilitates Spatial 
Learning Performance in DBA/2Ibg Mice 

S T A C E Y  M I L L E R * t  A N D  J E A N N E  M. WEHNER*:~ l 

*Institute for  Behavioral Genetics, Boulder, CO 
tDepartment o f  Psychology ~School o f  Pharmacy, Denver, University o f  Colorado, Boulder, CO 80309-0447 

Received 25 Augus t  1993 

MILLER, S. AND J. M. WEHNER. Cholesterol treatment facilitates spatial learning performance in DBA/21bg mice. 
PHARMACOL BIOCHEM BEHAV 49(1) 257-261, 1994. -- DBA/2Ibg mice were treated with cholesterol pellets for 11 
days. On the seventh day after treatment, animals began 5 consecutive days of training on the spatial form of Morris water 
task, followed on the third and fourth days by a probe trial, and random platform training on the fifth day. DBA mice with 
cholesterol pellets exhibited enhanced performance compared to DBA mice that underwent a sham surgery. Our results 
suggest that subchronic treatment with the steroid hormone precursor, cholesterol, enhances spatial learning performance in 
DBA mice. 

DBA/2Ibg inbred mice Cholesterol Morris water task 

DBA/2 mice are impaired on several learning and memory 
tasks. In the Morris water task, they show relatively little 
spatial selectivity (31) even after extensive training. Likewise, 
DBA/2 mice do not perform well in the contextual version of 
fear-conditioned freezing task (25), or in a conditional spatial 
alternation task (22). These three tasks are all complex learn- 
ing tasks that are dependent on normal hippocampal- 
formation function (8,13,15,26,30). DBA/2 mice do perform 
well on simple discrimination tasks, suggesting that their im- 
pairment is not simply a matter of motivational or attentional 
problems, and may be due to a hippocampal malfunction (22). 

Interestingly, when DBA/2 mice are bred with C57BL/6 
mice, which are good performers on these hippocampal- 
formation dependent tasks, the resulting hybrid animals per- 
form better than either parental strain on the Morris water 
task (32). These results indicate that DBA/2 mice carry alleles 
that contribute to good spatial learning. Therefore, we have 
attempted to develop strategies for improvement of the DBA/ 
2 learning impairment. A number of reports have suggested 
that steroid hormones can modify learning performance (5,6). 
In the course of examining whether spatial learning was al- 
tered as a function of treatment with pellets of the glucocorti- 
coid, corticosterone, we observed that the performance of 

I Requests for reprints should be addressed to Jeanne M. Wehner, 
30th Street, Bldg. #RL4, Campus Box 447, Boulder, CO 80309-0447. 

DBA/2 mice was improved in pellet-implanted control ani- 
mals that received cholesterol pellets, but was not altered in 
the corticosterone-treated mice. The present report describes 
the improved performance of DBA/2 mice after cholesterol 
treatment in the Morris water task. 

METHOD 

Animals 

Twenty-four DBA/2Ibg male mice were used in this study. 
All mice were bred and maintained at the Institute for Behav- 
ioral Genetics. Animals were housed in groups of five same- 
sex mice per cage with food (Teklad Rodent Diet 8604) and 
water ad lib. Animals were maintained on a 12 L : 12 D (0700- 
1900) cycle. All testing was done between 1200 and 1700. Ani- 
mals were between 67 and 87 days of age on the first day of 
testing. 

Cholesterol Treatment 

Twelve DBA mice received a cholesterol pellet, and 12 re- 
ceived no pellet (sham) (2). Cholesterol pellets were made of 
90O7o cholesterol (CHL) (Sigma Chemical Co.) and 10O70 pea- 
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FIG. 1. Spatial learning performance o f  DBA mice. (a) Latency to escape scores from the 
12 trials on day 1 and 12 trials on day 3. Graph represents means  of  nine animals in each 
group + SEM. (b) Site crosses for each o f  the three potential sites (right, opposite, left) 
and  for the actual trained (platform) site as scored from the probe trials. Graph represents 
means  o f  nine animals in each group + SEM. (c) Random platform scores for SHAM- 
DBA and C H L - D B A  mice. Latency to escape to platform either at trained (control) site, 
or at new (random) site. Graph represents means  of  eight an ima l s /CHL group,  and seven 
a n i m a l s / S H A M  group + SEM. 
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receptor (21,27). We, therefore,  measured GABA-st imula ted  
chloride flux in cortex, and found no difference either between 
DBA and C57 mice, or between C H L  and S H A M  conditions 
(data not shown). However ,  chloride flux in other brain re- 
gions may be altered by the cholesterol treatment.  Because of  
the large number  of  animals required to examine all poten- 
tially affected brain regions, cortex was the only region exam- 
ined. 

Another  possibility is that C H L  treatment  alters membrane  
order. Kessler et al. (11,12) examined the effects of  learning 
on cholesterol levels in rat brain, and found decreased mem- 
brane cholesterol levels in h ippocampus and cortex of  maze- 
trained animals.  If  learning depletes endogenous cholesterol 
supplies, then it is possible that addit ion of  exogenous choles- 
terol might contribute to addit ional  learning. Caffrey and Pat- 
terson (3) observed that rats maintained on high saturated fat 
or cholesterol diets per formed better on a water maze than 
those fed low fat diets. Al though they did not  attribute the 
effect of  the diet to changes in membrane  structure, they con- 
cluded that high fat or high cholesterol diets may facilitate 
learning in stressful learning paradigms. 

Cholesterol  may also alter membrane  composit ion.  Protein 
kinase C (PKC), a phospholipid-dependent  enzyme that is 
membrane-bound in its activated form,  has been implicated in 
learning and memory  processes (1,7,17,23,24,33). Further-  
more,  recent data suggest that PKC translocation,  as well as 

lipid activation of  PKC, may change as a function of  learning 
(18,19,28,29). Studies addressing this potential mechanism of  
the C H L  effect in DBA mice are in progress. 

It is possible that the effect of  enhanced performance in 
the C H L - D B A  mice is due to an inf lammatory or stress re- 
sponse to the pellet. However,  DBA mice treated with pellets 
made of  40°7o allopregnanalone, 50°7o cholesterol, and 10% 
peanut oil, did not  differ from SHAMs for spatial learning 
performance (data not shown). 

In a recent recta-analysis of  human studies, Muldoon et 
al. (16) reported impaired performance in individuals having 
abnormally low cholesterol levels, and in individuals being 
treated with cholesterol-lowering drugs. In our study, differ- 
ences in plasma levels of  cholesterol between C H L  and sham 
DBA mice approached but did not  reach significance. This 
suggests that C H L  is being utilized and not simply accumulat- 
ing in the plasma. 

The results of  the experiments presented here suggest that 
cholesterol has an effect on DBA's ability to use a spatial 
strategy. 
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